Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Angew Chem Int Ed Engl ; : e202305536, 2023 Jun 06.
Article in English | MEDLINE | ID: covidwho-20238605

ABSTRACT

The trans-cleavage property of CRISPR-Cas12a system makes it an excellent tool for disease diagnosis. Nevertheless, most methods based on CRISPR-Cas system still require pre-amplification of the target to achieve the desired detection sensitivity. Here we generate Framework-Hotspot reporters (FHRs) with different local densities to investigate their effect on trans-cleavage activity of Cas12a. We find that the cleavage efficiency increases and the cleavage rate accelerates with increasing reporter density. We further construct a modular sensing platform with CRISPR-Cas12a-based target recognition and FHR-based signal transduction. Encouragingly, this modular platform enables sensitive (100 fM) and rapid (<15 min) detection of pathogen nucleic acids without pre-amplification, as well as detection of tumor protein markers in clinical samples. The design provides a facile strategy for enhanced trans cleavage of Cas12a, which accelerates and broadens its applications in biosensing.

2.
Adv Sci (Weinh) ; 10(11): e2205217, 2023 04.
Article in English | MEDLINE | ID: covidwho-2271765

ABSTRACT

Point-of-care testing (POCT) can be the method of choice for detecting infectious pathogens; these pathogens are responsible for not only infectious diseases such as COVID-19, but also for certain types of cancers. For example, infections by human papillomavirus (HPV) or Helicobacter pylori (H. pylori) are the main cause of cervical and stomach cancers, respectively. COVID-19 and many cancers are treatable with early diagnoses using POCT. A variety of nucleic acid testing have been developed for use in resource-limited environments. However, questions like unintegrated nucleic acid extraction, open detection systems increase the risk of cross-contamination, and dependence on expensive equipment and alternating current (AC) power supply, significantly limit the application of POCT, especially for on-site testing. In this paper, a simple portable platform is reported capable of rapid sample-to-answer testing within 30 min based on recombinase polymerase amplification (RPA) at a lower temperature, to detect SARS-CoV-2 virus and H. pylori bacteria with a limit of detection as low as 4 × 102 copies mL-1 . The platform used a battery-powered portable reader for on-chip one-pot amplification and fluorescence detection, and can test for multiple (up to four) infectious pathogens simultaneously. This platform can provide an alternative method for fast and reliable on-site diagnostic testing.


Subject(s)
COVID-19 , Communicable Diseases , Nucleic Acids , Humans , COVID-19/diagnosis , SARS-CoV-2 , Point-of-Care Systems
SELECTION OF CITATIONS
SEARCH DETAIL